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Abstract. We give estimates, from the massive field theory at d = 3, of the universal ratio 
a:/.;, where a,' and a: are the first confluent correction amplitudes of, respectively, the 
renormalised coupling constant g and the susceptibility ,y above the critical temperature. 
We also give an analytical expression (numerically determined) for g as a function of the 
temperature which reproduces the crossover between the values g = 0 and g = g* (g* is 
the fixed point value of g). This means that the infinite series of confluent corrections to 
g*, generated within the m4 model, are resummed. 

In order to test the hyperscaling hypothesis, it is convenient to study (Baker 1977) the 
dimensionless renormalised coupling constant g defined as, 

g = -6-d(a2X/aH2)/X2 (1) 

where 6 and x are, respectively, the correlation length and the susceptibility; H is the 
magnetic field. g behaves as ( T - T,)" where T is the temperature, T, its critical value; 
x = @*U, Y is the critical exponent of 6 and w* the anomalous dimension of the vacuum 
which vanishes if hyperscaling holds. In that case, which corresponds to the field 
theory (FT) framework, g tends to a finite g* (the fixed point value of g). 

The hyperscaling hypothesis has been much discussed (see, for example, Nickel 
1982) owing to a possible failure suggested by high temperature series expansion (HTSE) 

analysis which led to U* > 0 (Baker 1977). However, it has been realised that carefully 
taking into account confluent singularities could be essential in such an analysis (Nickel 
1982). 

For T =  T':, most of the quantities depending on T have a general asymptotic 
critical behaviour which reads as follows: 

f'(t)2A/iJtJ-'/(l+a;JtlA+. . .) (2) 

where t is proportional to T -  T, for T -  T,, Ar and A(A; and U; )  are the leading 
and first corrections to scaling critical exponents (amplitudes). The superscript + refers 
to the disordered phase. It is well known that the various ratios are universal 
(f and h denote two different quantities). Some of these ratios have been estimated 
from Fr techniques in an &-expansion framework (Aharony and Ahlers 1980, Chang 
and Houghton 1980, Nicoll and Albright 1985) and in the massive theory directly at 
d = 3  (Bagnuls and Bervillier 1981, 1985a). As for U ; ,  only E expansion up to first 
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order has been carried out (Chang and Rehr 1983) leading to a poor numerical accuracy 
of the value of U : /  U,'. 

In this letter we give estimates of U,'/.,' at d = 3 from the massive field theory 
using the long perturbative series of Nickel et a1 (1977). Owing to the greater numerical 
accuracy that we obtain using the sophisticated resummation method of perturbative 
series (Le Guillou and Zinn-Justin 1980), we think that we supply some useful 
information on the numerical verification of the validity of hyperscaling. 

We first obtain estimates of ai/.; by direct resummation of the series of the various 
terms which appear in equation (19)t of Chang and Rehr (1983). We rewrite this 
equation in the following form: 

L= ai A ( A +  1) 

U,' g* v[ y y  + y (  yi" - y y ) ]  
(3) 

in which y is the critical exponent of x, and y y )  are defined in equations (2.14) 
and (2.15) of Bagnuls and Bervillier (1981). The values so obtained are displayed in 
table 2. 

We also present here another formulation of the confluent singularities effect which 
may be more useful for a comparison with experimental data (Dohm 1984) and HTSE 

analysis. We give an analytic expression for g( t )  whose validity, within the Q4 model, 
goes far away from criticality. 

The main ingredients for obtaining g( t )  have already been described in great detail 
in Bagnuls and Bervillier (1985a). We shall restrict ourselves here to a brief presentation 
of the numerical study of g( t ) .  

This function naturally arises, in the framework of n, through its inverse which 
is expressed in terms of the renormalisation functions Zi(g)  ( i  = 1-3), calculated up 
to sixth loop order (Nickel et a1 1977), as follows (Bagnuls et al 1984, Bagnuls and 
Bervillier 1985a): 

in which ? is a dimensionless scaling field proportional to ( T - Tc)/ T,. The bound g* 
(the limit of g when T +  T,) is the non-trivial zero of the Wilson function which is 
also expressed through 2,. As shown by Symanzik (1973) (see also Bagnuls and 
Bervillier 1985a), ?( g )  has a non-perturbative expression. In order to avoid logarithmic 
singularities (as encountered in Bagnuls and Bervillier 1983), we integrate after having 
resummed the power series of 2,. This has been done numerically at various discretised 
values of g between 0 and g*. The evolution of g in terms of ? is shown in figure 
l ( a )  (dots). We then propose an analytic expression of g( i )  for n = 1, 2 and 3 ( n  is 
the spin dimensionality) which reproduces, with a relative error of less than the 
behaviour of g( i) for ? S  lo-,. The form chosen for g( I )  is 

( 5 )  

in which the X ,  are simple adjusted numbers and are given in table 1. We perform 
our numerical integrations twice according to the cases g:,x and gzin which correspond 
to the upper and lower values of the fixed point determined by an  error analysis of 
the resummation method for the series. 

g( i )  = g* [  1 + x, P ] X q  1 + X 4 P ] X 5  

t In this equation g* appears, by error, on the numerator. We re-establish the correct dependence in equation 
( 3 )  of the present letter. 
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Figure 1. ( a )  Illustration of the quality of the adjustment of the parameters X, ( i  = 2-5) 
of equation (5) (full curve) to the discretised (dots) evolution of g( i) primarily obtained 
from numerical study of equation (4). The adjustment is made up to ?= (indicated 
by the arrow) with a relative error of less than One sees that the points corresponding 
to r>  are also well reproduced although not fitted. ( b )  Illustration of the range of 
the influence of the first (chain curve) (1) and second (2) confluent corrections to g*. The 
pure scaling law behaviour would correspond to the straight horizontal line (0) .  One 
observes that in the range ?s lo-’ much more than one confluent correction is relevant. 
This supports the correctness of our determination of a: from equation ( 5 )  and table 1. 

Table 1. Numerical values of the parameters X, ( i  = 2-5) obtained by adjustment of the 
function g( (equation (5)) to its discretised evolution given by the study of equation (4) 
for n = 1-3. The two sets of values displayed (two successive lines) correspond to the 
bounds max (upper line) and min associated with the upper and lower values of g* at 
which the Wilson function vanishes. This yields an indication of the numerical accuracy 
of the work. The values of g* and A can be compared to the estimates obtained by Le 
Guillou and Zinn-Justin (1980). For a more complete discussion on the error estimates in 
this work see the text and Bagnuls and Bervillier (1985a). 

1.420 215 0.491 25 29.0571 -0.454 744 16.897 3 -0.579 649 
1.410942 0.50031 29.6238 -0.694946 11.857 5 -0.331 626 
1.408 862 0.520 10 30.1399 -0.640906 13.992 1 -0.334 648 
1.401 516 0.5274 32.4596 -0.662 867 11.997 3 -0.306 613 
1.392 477 0.5498 32.9598 -0.673 133 11.3944 -0.252 812 
1.390814 0.5504 32.3769 -0.711 793 9.17041 -0.224 708 
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From equation (5) we obtain 

a; = x*x, + x,x, 
which, combined with previous results for U,’ (Bagnuls and Bervillier 1985a), leads to 
the estimates for a; /u :  displayed in table 2. They are in agreement with results 
obtained with equation (3)  but with smaller error bars. This error minimisation has 
two different origins. First, only one resummation method is used here (by contrast 
with the work of Le Guillou and Zinn-Justin (1980)), and second the error correlations 
are better taken into account (see Bagnuls and Bervillier 1985a). 

Table 2. Numerical values of the ratio a l i a ;  for n = 1-3 obtained from equation (6), table 
1 and Bagnuls and Bervillier (1985a) (second column), equation (3) and Bagnuls and 
Bervillier (1981) (third column), E expansion (Chang and Rehr 1983) (fourth column), 
HTSE analysis (George and Rehr 1985) (fifth column). One can observe that the non- 
asvmptotic formulation (equation (6))  gives values in agreement with those obtained by 
direct estimates from equation (3) with, however, reduced error bars (see text). The 
agreement with HTSE is better than that obtained from E expansion which cannot give 
accurate information when limited to small orders. 

In the sixth and seventh columns, we give the estimates of yi” and y!” as they were 
determined and used in Bagnuls and Bervillier (1981). 

a:/.,’ 

From From 
7yl-  (1) n table 1 equation (3) E expansion HTSE Y:” Y 3  

1 -2.848 (64) -2.8 (4)  -2.22 -3.2 (6) 0.054 (14) -0.284 ( 1  1) 
2 -2.084 (54) -2.03 (25) -1.75 - 0.049(17) -0.353 (11) 
3 -1.652 (44) -1.55 (24) -1.49 - 0.056 (36) -0.445 (20) 

Beyond the knowledge of U ;  through a universal ratio, the function g( ?) that we 
obtain may have an interest by itself in a comparison with experiments and HTSE 

analysis. Although the model has a validity limited to values of T -  T, for which 
higher corrections than the first one are negligible, the knowledge of non-asymptotic 
critical behaviour within this model is very interesting because of the information then 
obtained on the true convergence of the Wegner expansion (Wegner 1972). As is 
shown in figure l(b),  one clearly sees the range of influence of the first two confluent 
corrections (within the Q4 model). A complete discussion of the use of equation (5) 
for concrete comparison (in particular the introduction of adjustable parameters) is 
given in Bagnuls and Bervillier (1984, 1985a, b). 
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